Introduit des fondamentaux d'apprentissage profond, couvrant les représentations de données, les réseaux neuronaux et les réseaux neuronaux convolutionnels.
Présente les réseaux neuronaux convolutifs, en expliquant leur architecture, leur processus de formation et leurs applications dans les tâches de segmentation sémantique.
Introduit un cadre fonctionnel pour les réseaux neuronaux profonds avec des splines adaptatives linéaires à la pièce, mettant l'accent sur la reconstruction de l'image biomédicale et les défis des splines profondes.
Explore l'apprentissage en apprentissage profond pour les véhicules autonomes, couvrant les modèles prédictifs, RNN, ImageNet, et l'apprentissage de transfert.
Couvre les faits stylisés du rendement des actifs, des statistiques sommaires, des tests de la normalité, des placettes Q-Q et des hypothèses de marché efficaces.