Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Par Meenakshi Khosla explore la modélisation basée sur les données dans les neurosciences naturalistes à grande échelle, en mettant l'accent sur la représentation de l'activité cérébrale et les modèles de calcul.
Explore les réseaux d'attraction et les généralisations du modèle Hopfield en neuroscience computationnelle, en mettant l'accent sur la recherche de mémoire et la convergence dynamique.
Explore le modèle de Hopfield stochastique, les neurones bruyants, les probabilités de tir, la récupération de mémoire et les équations de chevauchement dans les réseaux d'attraction.
Couvre l'informatique neuromorphe, les défis dans l'informatique ternaire et binaire, les simulations matérielles du cerveau, et les nouveaux matériaux pour les cellules cérébrales artificielles.
Discute des défis liés à la construction de réseaux neuraux physiques, en mettant l'accent sur la profondeur, les connexions et la capacité de formation.