Explore la régression linéaire avec et sans covariables, couvrant des modèles capturés par des distributions indépendantes et des outils comme des sous-espaces et des projections orthogonales.
Couvre la décomposition d'une matrice dans ses valeurs propres et ses vecteurs propres, l'orthogonalité des vecteurs propres et la normalisation des vecteurs.
Explore les valeurs propres, les vecteurs propres et les méthodes de résolution de systèmes linéaires en mettant l'accent sur les erreurs d'arrondi et les matrices de préconditionnement.