Explore la convergence en droit pour les variables aléatoires, y compris le théorème de Kolmogorov et les preuves basées sur les lemmes de probabilité.
Couvre les propriétés des espaces complets, y compris l'exhaustivité, les attentes, les incorporations, les sous-ensembles, les normes, l'inégalité de Holder et l'intégrabilité uniforme.
Explore les critères de convergence pour les martingales, y compris la convergence presque certaine et le critère de Cauchy, conduisant au premier théorème de convergence de martingale.