Explore les géométries non euclides, hyperboliques et sphériques, défiant la géométrie traditionnelle euclidienne avec des implications pour les mathématiques modernes.
Présente des éléments euclidiens, explore l'unicité de l'infini, des lignes parallèles et différentes géométries comme l'euclidienne, hyperbolique et sphérique.
Couvre les opérations et les constructions fondamentales en géométrie euclidienne, en se concentrant sur les interprétations algébriques et les constructions de règle et de compas.
Explore les géométries non euclides, y compris la géométrie hyperbolique et le modèle tractricoïde, défiant les principes euclidiens et introduisant la géométrie projective.
Présente les concepts fondamentaux de la géométrie euclidienne et les éléments d'Euclid, explorant le contexte historique, les propositions clés et les postulats.
Explore les applications historiques et pratiques de la géométrie dans l'architecture, en mettant l'accent sur les principes géométriques clés dans le design architectural.
Introduit les concepts fondamentaux de la géométrie euclidienne, en se concentrant sur les éléments d'Euclide et la structure logique des propositions géométriques.