Algorithme simplex en deux phases: introduction et dualité
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit les bases de la programmation linéaire, y compris les problèmes d'optimisation, les fonctions de coût, l'algorithme simplex, la géométrie des programmes linéaires, les points extrêmes et la dégénérescence.
Couvre les bases de la programmation non linéaire et ses applications dans le contrôle optimal, en explorant des techniques, des exemples, des définitions d'optimalité et les conditions nécessaires.
Couvre le concept de couverture pour les programmes linéaires et la méthode simplex, en se concentrant sur la réduction des coûts et la recherche de solutions optimales.
Explore la dualité de programmation linéaire, couvrant la dualité faible, la dualité forte, l'interprétation des multiplicateurs de Lagrange et les contraintes d'optimisation.
Explore l'optimisation de la programmation linéaire avec des contraintes, l'algorithme de Dijkstra et les formulations LP pour trouver des solutions réalisables.
Explore l'importance des contraintes actives dans l'optimisation linéaire, en montrant comment elles influencent la simplification des problèmes en se concentrant sur les contraintes pertinentes.
Explore l'optimisation primaire-duelle, la conjugaison des fonctions, la dualité forte, et les méthodes de pénalité quadratique en mathématiques de données.