Présente l'approche de l'espace d'état pour modéliser des systèmes dynamiques et son utilité pour la solution à grande vitesse des équations différentielles et des algorithmes informatiques.
Couvre les systèmes dynamiques, les points d'équilibre, l'analyse de stabilité et les placettes de phase à l'aide d'exemples comme le système pendulaire.
Explore le gradient de stimulation en ligne pour les problèmes de contrôle non-stochastiques, mettant l'accent sur la réduction des regrets politiques et la stabilité dans le contrôle.
Explore l'accessibilité et la contrôlabilité dans les systèmes de contrôle multivariables, en discutant des essais, des épreuves et de leurs implications.