Explore l'apprentissage et le contrôle des systèmes complexes, en abordant les défis et les possibilités en matière de technologie et de recherche interdisciplinaire.
Explore le défi de contrôle dans les systèmes robotiques souples et l'utilisation de modèles simplifiés avec théorie de contrôle non linéaire pour l'exécution dynamique des tâches.
Explore la conception de poids et l'analyse de stabilité dans les systèmes de contrôle multivariables, en mettant l'accent sur la théorie Lyapunov et la stabilité LQR.
Explore le contrôle intégral, l'estimation des perturbations, la conception du contrôleur et la conception de l'observateur dans les systèmes de contrôle multivariables.
Couvre la théorie des systèmes, le contrôle de rétroaction classique et les applications dans les bâtiments écologiques et les installations de réfrigération au gaz naturel.
Explore l'apprentissage visuel sûr et efficace en matière de données pour la robotique, couvrant la théorie du contrôle, les systèmes de perception, l'apprentissage de bout en bout et les politiques d'experts.