Présente la classification des groupes abéliens finis comme des produits de groupes cycliques, un résultat fondamental dans diverses branches des mathématiques.
Explore la structure locale des groupes compacts locaux totalement déconnectés, couvrant des sous-groupes proportionnels, des achèvements, des automorphismes locaux et le quasi-centre.
Explore le concept de sous-groupes p de Sylow en théorie de groupe, mettant l'accent sur la philosophie d'étudier des objets mathématiques «un premier à la fois».
Présente les concepts de base des groupes, y compris les définitions, les propriétés et les homomorphismes, en mettant l'accent sur les propriétés des sous-groupes et les sous-groupes normaux.