Mémoire longue et ARCH: Séries chronologiques Math 342
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'estimation paramétrique, les processus intégrés, la modélisation saisonnière et la construction de modèles ARIMA dans l'analyse des séries chronologiques.
Couvre les propriétés stochastiques des séries temporelles, de la stationnarité, de l'autocovariance, des processus stochastiques spéciaux, de la densité spectrale, des filtres numériques, des techniques d'estimation, du contrôle des modèles, de la prévision et des modèles avancés.
Explore la dépendance, la corrélation et les attentes conditionnelles en matière de probabilité et de statistiques, en soulignant leur importance et leurs limites.
Introduit le filtre Kalman pour estimer l'état d'un système dynamique à partir de mesures bruyantes, couvrant la prédiction, la mise à jour et les étapes de filtrage.
Couvre les modèles de données de comptage et la régression de Poisson, puis les transitions vers une analyse univariée des séries chronologiques pour la prévision des variables économiques.