Couvre les bases de la régression linéaire et la façon de résoudre les problèmes d'estimation en utilisant les moindres carrés et la notation matricielle.
Couvre des exemples de modèles de décision pour lapprentissage supervisé, y compris la régression, la classification, les paires de classement et le décodage de séquence pour les modèles OCR.
Déplacez-vous dans l'analyse de régression, en mettant l'accent sur les vérifications de distribution, les moindres carrés pondérés et les tests d'hypothèse.
Explore les concepts avancés dans les modèles de régression linéaire, y compris la multicolinéarité, les tests d'hypothèses et les valeurs aberrantes de manipulation.
Couvre les bases de la régression linéaire dans l'apprentissage automatique, y compris la formation des modèles, les fonctions de perte et les mesures d'évaluation.
Couvre les variables instrumentales, abordant les problèmes d'endogénéité dans l'analyse de régression à travers des techniques d'estimation et des exemples pratiques.