Couvre les méthodes de calcul des systèmes moléculaires à température finie, en mettant l'accent sur l'échantillonnage stochastique et les simulations d'évolution du temps.
Explore explicitement les méthodes de Runge-Kutta stabilisées et leur application aux problèmes inverses bayésiens, couvrant l'optimisation, l'échantillonnage et les expériences numériques.
Explore la convergence des algorithmes Langevin Monte Carlo dans des taux de croissance et des conditions de douceur différents, mettant l'accent sur une convergence rapide pour une large classe de potentiels.
Explore Markov Chain Monte Carlo pour l'échantillonnage des distributions haute dimension et l'optimisation des fonctions à l'aide de l'algorithme Metropolis-Hastings.