Interactions d'ordre supérieur dans les réseaux cérébraux
Séances de cours associées (32)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre le concept de cohomologie de groupe, se concentrant sur les complexes de chaîne, les complexes de cochain, les produits de tasse et les anneaux de groupe.
Couvre les bases de la connectomique cérébrale, y compris les réseaux du cerveau, la terminologie, les schémas de données, le prétraitement, la connectivité des noeuds et la structure fonctionnelle du connectome.
Plonge dans l'analyse des données topologiques, explorant la forme des données et leur structure sous-jacente à l'aide d'outils et de concepts mathématiques.
Se penche sur l'analyse des données topologiques, en mettant l'accent sur les fondements mathématiques des réseaux neuronaux et en explorant l'hypothèse multiple et l'homologie persistante.
Explore les bases de la neuroimagerie, les échelles du réseau cérébral, la connectivité, l'histoire et la physique, soulignant l'importance de comprendre les données à différentes échelles.
Couvre les souris transgéniques utilisant les lignes de Cre et l'optogénétique, explorant les techniques de manipulation des cellules neurales et l'expression génétique spécifique à la région du cerveau.
Explore l'apprentissage automatique atomistique, intégrant les principes physiques dans les modèles pour prédire avec précision les propriétés moléculaires.
Discuter de l'évaluation de la mesure des risques, des intervalles de confiance et des distributions multivariées pour l'évaluation des risques du portefeuille.