Couvre les espaces normés, les espaces doubles, les espaces de Banach, les espaces de Hilbert, la convergence faible et forte, les espaces réflexifs et le théorème de Hahn-Banach.
Explique les grilles de différence finie pour calculer les solutions de membranes élastiques à l'aide de l'équation et des méthodes numériques de Laplace.
Introduit la méthode de différence finie pour l'approximation des dérivés et la résolution des équations différentielles dans les applications pratiques.
Introduit la statique linéaire pour les solides élastiques linéaires dans les petites déformations, l'équilibre des contraintes, le principe de travail virtuel et la méthode des éléments finis.
Couvre les méthodes numériques pour résoudre les problèmes de valeurs limites en utilisant des méthodes de différence finie, de FFT et d'éléments finis.