Explore le théorème de Wedderburn, les algèbres de groupe et le théorème de Maschke dans le contexte des algèbres simples de dimension finie et de leurs endomorphismes.
Explore les endomorphismes et les automorphismes de groupes compacts locaux totalement déconnectés, mettant l'accent sur les homomorphismes surjectifs et les groupes abeliens libres.
Explore les représentations des personnages dans la théorie de la répétition de groupe, en discutant de l'irréductibilité, de l'équivalence et des valeurs associées.
Explore le concept de sous-groupes p de Sylow en théorie de groupe, mettant l'accent sur la philosophie d'étudier des objets mathématiques «un premier à la fois».