Couvre les bases de l'optimisation convexe, y compris les problèmes mathématiques, les minimiseurs et les concepts de solution, en mettant l'accent sur des méthodes efficaces et des applications pratiques.
Introduit l'optimisation convexe, couvrant les ensembles convexes, les concepts de solution et les méthodes numériques efficaces en optimisation mathématique.
Introduit les bases de la programmation linéaire, y compris les problèmes d'optimisation, les fonctions de coût, l'algorithme simplex, la géométrie des programmes linéaires, les points extrêmes et la dégénérescence.
Présente deux exemples fondamentaux d'ensembles simpliciaux: le nerf d'une petite catégorie et l'ensemble simplicial singulier d'un espace topologique.