Explore les gradients de calcul sur les collecteurs Riemanniens à travers des extensions et des rétractions, mettant l'accent sur les projecteurs orthogonaux et les extensions lisses.
Explore les connexions sur les collecteurs, en mettant l'accent sur la définition axiomatique et les propriétés des dérivés dans les champs vectoriels de différenciation.
Explore la dynamique des débits réguliers d'Euler sur les collecteurs Riemanniens, couvrant les fluides idéaux, les équations d'Euler, les débits eulérisables et les obstacles à l'exposition des bouchons.
Couvre la méthode de Newton sur les variétés riemanniennes, en se concentrant sur les conditions d'optimalité du second ordre et la convergence quadratique.