Couvre les concepts d'homéomorphismes locaux et de couvertures en multiples, en mettant l'accent sur les conditions dans lesquelles une carte est considérée comme un homéomorphisme local ou une couverture.
Couvre la théorie de la dimension des anneaux, y compris l'additivité de la dimension et de la hauteur, Hauptidealsatz de Krull, et la hauteur des intersections générales complètes.
Couvre le rôle des symétries et des groupes dans la mécanique quantique, en se concentrant sur SU2 et SU3, leurs propriétés et leurs implications pour les théories physiques.