Introduit les principes fondamentaux de l'optimisation convexe, en soulignant l'importance des fonctions convexes dans la simplification du processus de minimisation.
Explore la dualité conjuguée dans l'optimisation convexe, couvrant les hyperplans faibles et soutenants, les sous-gradients, l'écart de dualité et les conditions de dualité fortes.
Explore la dualité lagrangienne dans l'optimisation convexe, transformant les problèmes en formulations min-max et discutant de l'importance des solutions doubles.
Introduit l'optimisation convexe à travers des ensembles et des fonctions, couvrant les intersections, exemples, opérations, gradient, Hessian, et applications du monde réel.
Introduit l'optimisation convexe, couvrant les ensembles convexes, les concepts de solution et les méthodes numériques efficaces en optimisation mathématique.
Couvre des exercices sur l'optimisation convexe, en se concentrant sur la formulation et la résolution de problèmes d'optimisation en utilisant YALMIP et des solveurs comme GUROBI et MOSEK.