Séance de cours

Autocorrélation et variables instrumentales

Séances de cours associées (36)
Variables instrumentales: Traiter l'erreur de mesure et la causalité inverse
Explore comment les variables instrumentales corrigent les biais à partir des erreurs de mesure et de la causalité inverse dans les modèles de régression.
Régression linéaire : Fondements
Couvre les bases de la régression linéaire, y compris l'OLS, l'hétéroskédasticité, l'autocorrélation, les variables instrumentales, l'estimation maximale de la probabilité, l'analyse des séries chronologiques et les conseils pratiques.
Régression linéaire : Fondements
Couvre les bases de la régression linéaire, des variables instrumentales, de l'hétéroscédasticité, de l'autocorrélation et de l'estimation du maximum de vraisemblance.
Hétéroskédasticité et autocorrélation
Explore l'hétéroscédasticité et l'autocorrélation en économétrie, couvrant les implications, les applications, les méthodes de test et les conséquences des tests d'hypothèses.
Hétéroskédasticité: Ch. 4a
Explore l'hétéroskédasticité en économétrie, en discutant de son impact sur les erreurs standard, les estimateurs alternatifs, les méthodes d'essai et les implications pour les tests d'hypothèses.
Bases du modèle de régression linéaire
Couvre les bases de la régression linéaire, la méthode OLS, les valeurs prédites, les résidus, la notation matricielle, la bonté d'adaptation, les tests d'hypothèse et les intervalles de confiance.
Régression linéaire : au-delà des bases
Explore les concepts avancés dans les modèles de régression linéaire, y compris la multicolinéarité, les tests d'hypothèses et les valeurs aberrantes de manipulation.
Régression linéaire: Multicolinéarité, Outliers, Spécification du modèle
Couvre la multicolinéarité, les valeurs aberrantes, la spécification du modèle et les stratégies pratiques en régression linéaire.
Les bases de la régression linéaire
Couvre les bases de la régression linéaire, y compris les estimateurs OLS, les tests d'hypothèse et les intervalles de confiance.
Modèles probabilistes pour la régression linéaire
Couvre le modèle probabiliste de régression linéaire et ses applications dans la résonance magnétique nucléaire et l'imagerie par rayons X.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.