Couvre les bases de l'optimisation convexe, y compris les problèmes mathématiques, les minimiseurs et les concepts de solution, en mettant l'accent sur des méthodes efficaces et des applications pratiques.
Introduit l'optimisation convexe, couvrant les ensembles convexes, les concepts de solution et les méthodes numériques efficaces en optimisation mathématique.
Explore les résultats élémentaires en optimisation convexe, y compris les coques affines, convexes et coniques, les cônes appropriés et les fonctions convexes.
Couvre l'approche de programmation linéaire de l'apprentissage par renforcement, en se concentrant sur ses applications et ses avantages dans la résolution des processus décisionnels de Markov.
Explore la dualité conjuguée dans l'optimisation convexe, couvrant les hyperplans faibles et soutenants, les sous-gradients, l'écart de dualité et les conditions de dualité fortes.
Explore les problèmes d'optimisation convexe, les critères d'optimalité, les problèmes équivalents et les applications pratiques dans le transport et la robotique.
Introduit l'optimisation convexe à travers des ensembles et des fonctions, couvrant les intersections, exemples, opérations, gradient, Hessian, et applications du monde réel.
Explore la dualité lagrangienne dans l'optimisation convexe, transformant les problèmes en formulations min-max et discutant de l'importance des solutions doubles.