Couvre les bases de la régression linéaire, la méthode OLS, les valeurs prédites, les résidus, la notation matricielle, la bonté d'adaptation, les tests d'hypothèse et les intervalles de confiance.
Explore la théorie de la distribution des estimateurs des moindres carrés dans un modèle linéaire gaussien, en mettant l'accent sur la construction des intervalles de précision et de confiance.
Explore l'analyse des données bivariées dans les biostatistiques appliquées, couvrant la corrélation, la régression, la sélection des modèles et le diagnostic.