Introduit les principes fondamentaux de l'optimisation convexe, en soulignant l'importance des fonctions convexes dans la simplification du processus de minimisation.
Explore l'optimisation convexe, en soulignant l'importance de minimiser les fonctions dans un ensemble convexe et l'importance des processus continus dans l'étude des taux de convergence.
Explore la descente progressive stochastique avec la moyenne, la comparant avec la descente progressive, et discute des défis dans l'optimisation non convexe et les techniques de récupération clairsemées.
Explore l'optimisation convexe, les fonctions convexes et leurs propriétés, y compris la convexité stricte et la convexité forte, ainsi que différents types de fonctions convexes comme les fonctions et les normes affines linéaires.
Explore les méthodes de descente de gradient pour les problèmes convexes lisses et non convexes, couvrant les stratégies itératives, les taux de convergence et les défis d'optimisation.