Couvre les méthodes de recherche de ligne de gradient et les techniques d'optimisation en mettant l'accent sur les conditions Wolfe et la définition positive.
Explore l'estimation des erreurs dans les méthodes numériques pour résoudre les équations différentielles ordinaires, en mettant l'accent sur l'impact des erreurs sur la précision et la stabilité de la solution.
Couvre la dérivation de l'équation du mouvement, de l'interpolation, de l'équation de Newton et de la conservation de l'énergie dans la modélisation des éléments finis.