Couvre l'adjonction entre les ensembles simpliciaux et les catégories enrichies en simpliciation, y compris la préservation des inclusions et la construction des catégories homotopiques.
Couvre la théorie des groupes et de l'algèbre homotopique, mettant l'accent sur les transformations naturelles, les identités et l'isomorphisme des catégories.
Couvre le concept de cohomologie de groupe, se concentrant sur les complexes de chaîne, les complexes de cochain, les produits de tasse et les anneaux de groupe.