Séance de cours

Régression robuste : méthodes et applications

Séances de cours associées (32)
Régularisation de l'apprentissage automatique
Explore Ridge et Lasso Regression pour la régularisation dans les modèles d'apprentissage automatique, en mettant l'accent sur le réglage hyperparamétrique et la visualisation des coefficients des paramètres.
Modèles probabilistes pour la régression linéaire
Couvre le modèle probabiliste de régression linéaire et ses applications dans la résonance magnétique nucléaire et l'imagerie par rayons X.
Régression linéaire : Inférence statistique et régularisation
Couvre le modèle probabiliste de régression linéaire et l'importance des techniques de régularisation.
Estimation des moindres carrés pondérés : Algorithme IRLS
Explore l'algorithme IRLS pour l'estimation pondérée des moindres carrés dans GLM.
Régression linéaire : Fondements
Couvre les bases de la régression linéaire, des variables instrumentales, de l'hétéroscédasticité, de l'autocorrélation et de l'estimation du maximum de vraisemblance.
Régression linéaire : Fondements
Couvre les bases de la régression linéaire, y compris l'OLS, l'hétéroskédasticité, l'autocorrélation, les variables instrumentales, l'estimation maximale de la probabilité, l'analyse des séries chronologiques et les conseils pratiques.
Critères de sélection du modèle : AIC, BIC, Cp
Explore les critères de sélection des modèles comme l'AIC, le BIC et le Cp en statistique pour la science des données.
Régression: Linéaire simple et multiple
Couvre la régression linéaire simple et multiple, y compris l'estimation des moindres carrés et le diagnostic du modèle.
Régression linéaire : Inférence moyenne-carré-erreur
Couvre le problème du MSE dans les modèles de régression linéaire, en mettant l'accent sur les méthodes optimales d'estimateur et de fusion des données.
Régression linéaire : analyse des données sur l'ozone
Explore l'analyse de régression linéaire des données sur l'ozone à l'aide de modèles statistiques.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.