Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la dynamique quantique de plusieurs corps à l'aide de réseaux neuronaux artificiels, en mettant l'accent sur les simulations expérimentales et les défis théoriques.
Explore la communication sans fil industrielle, les protocoles de communication, le modèle OSI, les topologies de réseau sans fil et les systèmes d'exécution de fabrication.
Explore les règles d'apprentissage locales pour les représentations et les actions, couvrant la plasticité synaptique, le renforcement de l'apprentissage et les bonnes représentations.
Explore l'apprentissage automatique dans les simulations de dynamique moléculaire, s'attaquant à la malédiction de la dimensionnalité, de la représentation du réseau neuronal et de l'estimation des champs de force.
Discute du décalage d'entrée moyen et du problème de biais dans les mises à jour de poids pour les réseaux neuronaux, soulignant l'importance d'une initialisation correcte pour prévenir les problèmes de gradient.
Couvre l'apprentissage hébbien, le renforcement de l'apprentissage, les types d'apprentissage, les modèles neuronaux, les règles d'apprentissage et l'homéostasie de poids.