Couvre les bases de l'optimisation, y compris les métriques, les normes, la convexité, les gradients et la régression logistique, en mettant l'accent sur les forts taux de convexité et de convergence.
Couvre les espaces normés, les espaces doubles, les espaces de Banach, les espaces de Hilbert, la convergence faible et forte, les espaces réflexifs et le théorème de Hahn-Banach.
Couvre les concepts essentiels de l'algèbre linéaire pour l'optimisation convexe, y compris les normes vectorielles, la décomposition des valeurs propres et les propriétés matricielles.
Introduit la conjugaison Fenchel, explorant ses propriétés, exemples et applications dans les problèmes d'optimisation non lisses et les formulations minimax.
Explore les bases de l'optimisation telles que les normes, la convexité et la différentiabilité, ainsi que les applications pratiques et les taux de convergence.
Explore les sous-gradients dans les fonctions convexes, mettant l'accent sur les scénarios et les propriétés des subdifférentiels non dissociables mais convexes.
Introduit les bases de l'optimisation, couvrant les normes, la convexité, la différentiabilité, et plus encore, en mettant l'accent sur les métriques, les normes vectorielles, les normes matricielles et la continuité.