Explore les conditions KKT dans l'optimisation convexe, couvrant les problèmes doubles, les contraintes logarithmiques, les moindres carrés, les fonctions matricielles et la sous-optimalité de la couverture des ellipsoïdes.
Explore la dualité forte, le relâchement complémentaire, l'interprétation économique et les scénarios de problèmes stochastiques dans la programmation linéaire.
Explore la dualité lagrangienne dans l'optimisation convexe, transformant les problèmes en formulations min-max et discutant de l'importance des solutions doubles.
Explore la dualité dans la programmation linéaire, la dualité forte, le relâchement complémentaire et l'interprétation économique des variables doubles en tant que prix.
S'oriente vers la dualité dans l'optimisation, la dualité faible, les certificats de coûts et la transformation des programmes non linéaires en programmes linéaires.
Couvre la régression quantile, en se concentrant sur l'optimisation linéaire pour prédire les résultats et discuter de la sensibilité aux valeurs aberrantes, de la formulation des problèmes et de la mise en œuvre pratique.
Explore la dualité lagrangienne dans l'optimisation convexe, en discutant de la dualité forte, des solutions duales et des applications pratiques dans les programmes de cônes de second ordre.