Couvre les espaces normés, les espaces doubles, les espaces de Banach, les espaces de Hilbert, la convergence faible et forte, les espaces réflexifs et le théorème de Hahn-Banach.
Explore la dualité conjuguée dans l'optimisation convexe, couvrant les hyperplans faibles et soutenants, les sous-gradients, l'écart de dualité et les conditions de dualité fortes.
Couvre les concepts essentiels de l'algèbre linéaire pour l'optimisation convexe, y compris les normes vectorielles, la décomposition des valeurs propres et les propriétés matricielles.
Introduit l'optimisation convexe à travers des ensembles et des fonctions, couvrant les intersections, exemples, opérations, gradient, Hessian, et applications du monde réel.
Couvre les bases de l'optimisation, y compris les métriques, les normes, la convexité, les gradients et la régression logistique, en mettant l'accent sur les forts taux de convexité et de convergence.
Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité et ses implications pour une résolution efficace des problèmes.
Explore les résultats élémentaires en optimisation convexe, y compris les coques affines, convexes et coniques, les cônes appropriés et les fonctions convexes.