Automatisation du contrôle : Cartographie Visuomotrice complexe
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Par Meenakshi Khosla explore la modélisation basée sur les données dans les neurosciences naturalistes à grande échelle, en mettant l'accent sur la représentation de l'activité cérébrale et les modèles de calcul.
Explore l'optimisation des systèmes neuroprothétiques, y compris la restauration de rétroaction sensorielle et les stratégies de stimulation neuronale.
Explore la synergie entre l'apprentissage automatique et les neurosciences, en montrant comment les réseaux neuronaux profonds peuvent prédire les réponses neuronales et les défis rencontrés par l'IA en robotique.
Couvre les bases NeuroM, y compris la vérification de la qualité des neurones, l'extraction de la morphométrie et la visualisation des neurones dans différents formats.
Explore les signaux neuraux, le traitement EMG, les synergies musculaires et le contrôle de la prothèse à l'aide de techniques avancées de traitement des signaux.
Couvre l'informatique neuromorphe, les défis dans l'informatique ternaire et binaire, les simulations matérielles du cerveau, et les nouveaux matériaux pour les cellules cérébrales artificielles.
Explore la relation complexe entre les neurosciences et l'apprentissage automatique, en soulignant les défis de l'analyse des données neuronales et le rôle des outils d'apprentissage automatique.
Explore les modèles de calcul du système visuel ventral, en se concentrant sur l'optimisation des réseaux pour les tâches réelles et la comparaison avec les données cérébrales.