Information mutuelle : Comprendre les variables aléatoires
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les promenades aléatoires, le modèle Moran, la chimiotaxie bactérienne, l'entropie, la théorie de l'information et les sites en coévolution dans les protéines.
Explore l'information mutuelle dans les données biologiques, en mettant l'accent sur son rôle dans la quantification de la dépendance statistique et l'analyse des séquences protéiques.
Explore l'entropie, le caractère aléatoire et la quantification de l'information dans l'analyse des données biologiques, y compris les neurosciences et la prédiction de la structure des protéines.
Sur l'entropie et l'information mutuelle explore la quantification de l'information dans la science des données au moyen de distributions de probabilités.
Plonge dans la quantification de l'entropie dans les données de neurosciences, explorant comment l'activité neuronale représente l'information sensorielle et les implications des séquences binaires.
Explore les limites de l'entropie, les théorèmes conditionnels de l'entropie et la règle de chaîne pour les entropies, illustrant leur application à travers des exemples.
Explore les informations mutuelles pour quantifier la dépendance statistique entre les variables et déduire des distributions de probabilité à partir de données.