Explore la cohérence et les propriétés asymptotiques de l’estimateur de vraisemblance maximale, y compris les défis à relever pour prouver sa cohérence et construire des estimateurs de type MLE.
Explore le phénomène Stein, présentant les avantages du biais dans les statistiques de grande dimension et la supériorité de l'estimateur James-Stein sur l'estimateur de probabilité maximale.
Explore l'estimation ponctuelle dans les statistiques, en discutant du biais, de la variance, de l'erreur quadratique moyenne et de la cohérence des estimateurs.
Explore l'inférence statistique pour les modèles linéaires, couvrant l'ajustement du modèle, l'estimation des paramètres et la décomposition de la variance.