Séries chronologiques: Modélisation structurelle et filtre Kalman
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les propriétés stochastiques des séries temporelles, de la stationnarité, de l'autocovariance, des processus stochastiques spéciaux, de la densité spectrale, des filtres numériques, des techniques d'estimation, du contrôle des modèles, de la prévision et des modèles avancés.
Explore les fondamentaux du traitement des signaux, y compris les signaux de temps discrets, la factorisation spectrale et les processus stochastiques.
Explore les modèles de séries chronologiques, en mettant l'accent sur les processus autorégressifs, y compris le bruit blanc, AR(1) et MA(1), entre autres.
Explore les propriétés stochastiques et la modélisation des séries chronologiques, couvrant l'autocovariance, la stationnarité, la densité spectrale, l'estimation, la prévision, les modèles ARCH et la modélisation multivariée.