Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les méthodes du noyau dans l'apprentissage machine avancé, se concentrant sur les noyaux, l'apprentissage non supervisé, et les algorithmes de classification.
Discute des méthodes d'estimation en probabilité et en statistiques, en se concentrant sur l'estimation du maximum de vraisemblance et les intervalles de confiance.
Couvre les eigenvectors, les composants principaux, les variables de probabilité, l'algorithme EM, l'inégalité de Jensen et maximiser les limites inférieures.
Couvre l'estimation multi-déformation et paramétrique dans l'analyse des séries temporelles, y compris l'estimation spectrale et l'ajustement du modèle AR.
Couvre les modèles d'apprentissage statistique, la minimisation des risques et la minimisation empirique des risques avec des exemples d'estimateurs de probabilité maximale.
S'oriente vers l'estimation optimale, le rôle de biais dans les échantillons finis, et le compromis délicat entre le biais et la variance dans l'estimation statistique.