Explore l'estimation de la probabilité maximale et les tests d'hypothèses multivariées, y compris les défis et les stratégies pour tester plusieurs hypothèses.
Se penche sur les estimateurs de vraisemblance maximale, leurs propriétés et leur comportement asymptotique, en mettant l'accent sur la cohérence et la normalité asymptotique.
Explore la régression linéaire dans une perspective d'inférence statistique, couvrant les modèles probabilistes, la vérité au sol, les étiquettes et les estimateurs de probabilité maximale.
Discute des méthodes d'estimation en probabilité et en statistiques, en se concentrant sur l'estimation du maximum de vraisemblance et les intervalles de confiance.
Couvre l'estimation maximale de la probabilité, en mettant l'accent sur l'estimation-distribution ML, l'estimation de la réduction et les fonctions de perte.
Couvre les concepts de lunettes de spin et d'estimation bayésienne, en se concentrant sur l'observation et la déduction de l'information d'un système de près.