Explore les schémas implicites dans l'analyse numérique, en mettant l'accent sur les propriétés de stabilité et de convergence dans la résolution des équations différentielles.
Explore la monotonie inverse dans les méthodes numériques pour les équations différentielles, en mettant l'accent sur les critères de stabilité et de convergence.
Explore explicitement les méthodes de Runge-Kutta stabilisées et leur application aux problèmes inverses bayésiens, couvrant l'optimisation, l'échantillonnage et les expériences numériques.