Introduit le degré de liaison quadratique dans la théorie motivienne des nœuds, couvrant les bases de la théorie des nœuds, la géométrie algébrique et la théorie des intersections.
Couvre la fermeture algébrique de Qp et la définition des nombres complexes p-adiques, en explorant la dépendance continue des racines sur les coefficients.
Introduit des méthodes itératives pour les équations linéaires, les critères de convergence, le gradient des formes quadratiques et les champs de force classiques dans les systèmes atomistiques complexes.
Explore les groupes de décomposition, les sous-groupes d'inertie, la théorie de Galois, les nombres premiers non-ramifiés et les champs cyclotomiques dans les actions de groupe et les extensions de champ.