Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Se penche sur les estimateurs de vraisemblance maximale, leurs propriétés et leur comportement asymptotique, en mettant l'accent sur la cohérence et la normalité asymptotique.
Explore la méthode des moments, le compromis biais-variance, la cohérence, le principe de plug-in et le principe de vraisemblance dans lestimation de point.
Couvre les propriétés, les applications et les hypothèses de l'estimation maximale de la probabilité, fournissant une compréhension complète des concepts MLE et de leurs implications pratiques.
Explore les modèles d'indépendance asymptotique pour les extrêmes multivariés et leurs applications dans l'extrapolation des probabilités à des événements rares.
Explore les méthodes d'estimation de la distribution, les fonctions de remise en forme et l'importance de choisir le bon estimateur pour obtenir des résultats précis.
Discute de l'estimation maximale de la probabilité pour la moyenne et la variance gaussiennes, explorant l'estimation des paramètres dans une distribution gaussienne.
S'oriente vers l'estimation optimale, le rôle de biais dans les échantillons finis, et le compromis délicat entre le biais et la variance dans l'estimation statistique.
Explore la vraisemblance du Whittle déprécié pour les séries chronologiques et les données spatiales, en mettant l'accent sur l'adaptation de la densité spectrale au parodogramme pour de meilleures prédictions et une meilleure estimation des paramètres.