Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les statistiques non paramétriques, les méthodes bayésiennes et la régression linéaire en mettant l'accent sur l'estimation de la densité du noyau et la distribution postérieure.
Explore les modèles génératifs, la régression logistique et la distribution gaussienne pour approximer les probabilités postérieures et optimiser les performances du modèle.
Discute de la distribution de Dirichlet, de l'inférence bayésienne, de la moyenne postérieure et de la variance, des antécédents conjugués et de la distribution prédictive dans le modèle de Dirichlet-Multinôme.
Explore les techniques bayésiennes pour les problèmes de valeur extrême, y compris l'inférence de la chaîne Markov Monte Carlo et de Bayesian, en soulignant l'importance de l'information antérieure et l'utilisation des graphiques.
Discute de l'inférence bayésienne pour la moyenne d'une distribution gaussienne avec variance connue, couvrant la moyenne postérieure, la variance et l'estimateur MAP.
Explore les techniques bayésiennes pour résoudre les problèmes de valeur extrême, en mettant l'accent sur l'analyse du MCMC et sur l'importance d'une information préalable appropriée.
Présente l'estimateur de Bayes, expliquant sa définition, son application dans des scénarios de coûts quadratiques et son importance dans le raisonnement probabiliste.
Explore les méthodes d'estimation de la distribution, les fonctions de remise en forme et l'importance de choisir le bon estimateur pour obtenir des résultats précis.
Explore les modèles de mélange et les paramètres de niveau individuel dans des scénarios de choix discrets, couvrant la distribution, le théorème de Bayes et les valeurs attendues.