Couvre les bases de l'analyse numérique et des méthodes de calcul utilisant Python, en se concentrant sur les algorithmes et les applications pratiques en mathématiques.
Couvre l'interpolation de Lagrange et son application dans les techniques d'intégration numérique, en se concentrant à la fois sur les méthodes non composites et composites de quadrature.
Couvre les techniques d'intégration numérique, en se concentrant sur l'interpolation de Lagrange et diverses méthodes de quadrature pour l'approximation des intégrales.
Couvre les formules de quadrature interpolatoires pour approximer des intégrales définies en utilisant des polynômes et discute du caractère unique des solutions et des applications pratiques en intégration numérique.
Explore la stabilité transitoire dans la dynamique des systèmes de puissance, couvrant les équations algébriques, les modèles de générateurs et les techniques d'intégration numérique.
Explore les transformations géométriques non linéaires dans l'ingénierie structurelle, en mettant l'accent sur des méthodes d'intégration précises et des applications pratiques.