Explore la régression linéaire dans une perspective d'inférence statistique, couvrant les modèles probabilistes, la vérité au sol, les étiquettes et les estimateurs de probabilité maximale.
Couvre l'apprentissage supervisé en mettant l'accent sur la régression linéaire, y compris des sujets comme la classification numérique, la détection des pourriels et la prédiction de la vitesse du vent.
Couvre les bases de la régression linéaire et la façon de résoudre les problèmes d'estimation en utilisant les moindres carrés et la notation matricielle.
Explore les statistiques non paramétriques, les méthodes bayésiennes et la régression linéaire en mettant l'accent sur l'estimation de la densité du noyau et la distribution postérieure.
Examine la régression probabiliste linéaire, couvrant les probabilités articulaires et conditionnelles, la régression des crêtes et l'atténuation excessive.