Explore la prédiction linéaire, les filtres optimaux, les signaux aléatoires, la stationnarité, l'autocorrélation, la densité spectrale de puissance et la transformée de Fourier dans le traitement du signal.
Explore les fondamentaux du traitement des signaux, y compris les signaux de temps discrets, la factorisation spectrale et les processus stochastiques.
Couvre le calcul stochastique, en se concentrant sur la formule d'Itô, les équations différentielles stochastiques, les propriétés martingales et le prix d'option.
Explore le traitement adaptatif du signal, la descente de gradient et l'algorithme LMS pour un filtrage efficace et un entraînement au réseau neuronal.
Explore les techniques de filtrage d'images, y compris les filtres linéaires et non linéaires, pour l'élimination des artefacts et l'amélioration des fonctionnalités.