Explorer la théorie principale de l'analyse des composants, les propriétés, les applications et les tests d'hypothèse dans les statistiques multivariées.
Explore la régression non paramétrique pour les réseaux, couvrant l'analyse des données d'objets, les graphiques de réseaux, les distances extrinsèques et les projections pratiques.
Couvre les techniques de traitement de l'image, y compris l'ajout de bruit, le filtrage et l'amélioration de l'image à l'aide de divers filtres et outils.
Couvre les vecteurs aléatoires, la densité de probabilité articulaire, les variables aléatoires indépendantes, les fonctions de deux variables aléatoires et les variables aléatoires gaussiennes.
Couvre la modélisation structurale, le filtre Kalman, la stationnarité, les méthodes d'estimation, la prévision et les modèles ARCH dans les séries chronologiques.
Explore la régression du mélange gaussien dans les ensembles de données 2D, en analysant les antécédents, les composantes et les résultats de régression.