Self-oscillationSelf-oscillation is the generation and maintenance of a periodic motion by a source of power that lacks any corresponding periodicity. The oscillator itself controls the phase with which the external power acts on it. Self-oscillators are therefore distinct from forced and parametric resonators, in which the power that sustains the motion must be modulated externally. In linear systems, self-oscillation appears as an instability associated with a negative damping term, which causes small perturbations to grow exponentially in amplitude.
Système de coordonnées curvilignesUn système de coordonnées curvilignes est une façon d'attribuer à chaque point du plan ou de l'espace un ensemble de nombres. Soit un point de l'espace dont les coordonnées sont notées . Un système de coordonnées quelconques est obtenu en se donnant trois fonctions arbitraires des paramètres , telles que ; ces fonctions sont choisies le plus souvent continues, et même différentiables. Les points correspondant à deux des trois coordonnées constantes décrivent une ligne de coordonnées.
Théorème du point fixe de Kakutanivignette|Exemple animé montrant des points x, et leurs images φ(x) par la fonction φ. L'animation finit par montrer un point x contenu dans φ(x). En analyse mathématique, le théorème du point fixe de Kakutani est un théorème de point fixe qui généralise celui de Brouwer à des fonctions à valeurs ensemblistes. Il fournit une condition suffisante pour qu'une telle fonction, définie sur un compact convexe d'un espace euclidien, possède un point fixe, c'est-à-dire dans ce contexte : un point qui appartient à son par cette fonction.
Matrice de rotationEn mathématiques, et plus précisément en algèbre linéaire, une matrice de rotation Q est une matrice orthogonale de déterminant 1, ce qui peut s'exprimer par les équations suivantes : QtQ = I = QQt et det Q = 1, où Qt est la matrice transposée de Q, et I est la matrice identité. Ces matrices sont exactement celles qui, dans un espace euclidien, représentent les isométries (vectorielles) directes.
Fixed-point iterationIn numerical analysis, fixed-point iteration is a method of computing fixed points of a function. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is which gives rise to the sequence of iterated function applications which is hoped to converge to a point . If is continuous, then one can prove that the obtained is a fixed point of , i.e., More generally, the function can be defined on any metric space with values in that same space.
Oscillateur harmonique quantiqueL'oscillateur harmonique quantique correspond au traitement par les outils de la mécanique quantique de l'oscillateur harmonique classique. De façon générale, un oscillateur est un système dont l'évolution dans le temps est périodique. Il est dit de plus harmonique si les oscillations effectuées sont sinusoïdales, avec une amplitude et une fréquence qui ne dépendent que des caractéristiques intrinsèques du système et des conditions initiales.
Référentiel non inertielUn référentiel non inertiel, ou non galiléen, est un référentiel qui ne vérifie pas les conditions nécessaires pour être inertiel (galiléen). Les deux premières lois du mouvement de Newton n'y sont vérifiées qu'en invoquant des forces supplémentaires appelées forces d'inertie, souvent qualifiées de « fictives », qui sont dues au mouvement accéléré du référentiel par rapport à un référentiel inertiel. Dans un référentiel inertiel, un corps ponctuel libre de toute influence a un mouvement inertiel qui suit un mouvement rectiligne uniforme.
Shock mountA shock mount or isolation mount is a mechanical fastener that connects two parts elastically. They are used for shock and vibration isolation. Isolation mounts allow a piece of equipment to be securely mounted to a foundation and/or frame and, at the same time, allow it to float independently from the substrate. Shock mounts can be found in a wide variety of applications. Shock mounts can be used to isolate the foundation or substrate from the dynamics of the mounted equipment.
Masse moléculaireLa masse moléculaire (absolue) est la masse d'une molécule, exprimée en unité de masse atomique : « uma » (équivalente à un douzième, soit 1/12, de la masse d'un atome de ). Elle peut être obtenue par l'addition de la masse atomique (absolue, mesurée en uma) de chaque atome de la molécule multipliée par leur indice numérique dans la formule brute ou mesurée expérimentalement par spectrométrie de masse. La masse moléculaire relative est le rapport entre la masse moléculaire absolue (en uma) et l'unité de masse atomique « uma ».
Politique énergétiqueLa politique énergétique est la politique adoptée par une entité vis-à-vis de la gestion de l'énergie. Elle a notamment une dimension géopolitique. Académies suisses des sciences, « Instruments pour une politique climatique et énergétique efficace », fiche d'information, 2019. Agence internationale de l'énergie Certificat économie énergie Dépendance au pétrole Direction générale de l'énergie et des matières premières Politique climatique Politique énergétique de l'Union européenne Politiques publiques de rénovation énergétique Sécurité énergétique Les invariants de l'énergie, conférence de Samuele Furfari sur la consommation d'énergie par l'homme (dépendance, ressources et contexte géopolitique).