Intégrale de GaussEn mathématiques, une intégrale de Gauss est l'intégrale d'une fonction gaussienne sur l'ensemble des réels. Sa valeur est reliée à la constante π par la formule où α est un paramètre réel strictement positif. Elle intervient dans la définition de la loi de probabilité appelée loi gaussienne, ou loi normale. Cette formule peut être obtenue grâce à une intégrale double et un changement de variable polaire. Sa première démonstration connue est donnée par Pierre-Simon de Laplace.
Multivariable calculusMultivariable calculus (also known as multivariate calculus) is the extension of calculus in one variable to calculus with functions of several variables: the differentiation and integration of functions involving multiple variables (multivariate), rather than just one. Multivariable calculus may be thought of as an elementary part of advanced calculus. For advanced calculus, see calculus on Euclidean space. The special case of calculus in three dimensional space is often called vector calculus.
Identité trigonométriqueUne identité trigonométrique est une relation impliquant des fonctions trigonométriques, vérifiée pour toutes les valeurs possibles des variables intervenant dans la relation. Ces identités peuvent servir à simplifier une expression comportant des fonctions trigonométriques ou à la transformer (par exemple pour en calculer une primitive). Elles constituent donc une « boîte à outils » utile pour la résolution de problèmes. Les fonctions trigonométriques sont définies géométriquement ou analytiquement.
Polynôme formelEn algèbre, le terme de polynôme formel, ou simplement polynôme, est le nom générique donné aux éléments d'une structure construite à partir d'un ensemble de nombres. On considère un ensemble A de nombres, qui peut être celui des entiers ou des réels, et on lui adjoint un élément X, appelé indéterminée. La structure est constituée par les nombres, le polynôme X, les puissances de X multipliées par un nombre, aussi appelés monômes (de la forme aX), ainsi que les sommes de monômes. La structure est généralement notée A[X].
Ingénierie et technologie spatialethumb|upright=1.6|Ingénieurs de la NASA pendant la mission Apollo 13 L'ingénierie et technologie spatiale désigne l'ensemble des fonctions concernant la conception, la construction, l'envoi dans l'espace et le contrôle ultérieur des véhicules spatiaux et des installations terrestres associées. Il s'agit d'un cas particulier d'ingénierie employé dans l'industrie spatiale. Puisqu'ils se déplacent dans l'espace, les véhicules spatiaux doivent subir des conditions éprouvantes : des forts gradients de température et de pression, de fortes contraintes structurales, des vibrations.
Hydrodynamique des particules lisséesL'hydrodynamique des particules lissées, en anglais Smoothed particle hydrodynamics (SPH), est une méthode de calcul utilisée pour simuler la mécanique des milieux continus, comme la mécanique des solides ou les écoulements de fluides. Elle a été développée par Gingold, Monaghan et Lucy en 1977, initialement pour des problèmes d'astrophysique. Elle a été utilisée dans de nombreux domaines de recherche, incluant l'astrophysique, la balistique, la volcanologie et océanologie.
Forme différentielleEn géométrie différentielle, une forme différentielle est la donnée d'un champ d'applications multilinéaires alternées sur les espaces tangents d'une variété différentielle possédant une certaine régularité. Le degré des formes différentielles désigne le degré des applications multilinéaires. La différentielle d'une fonction numérique peut être regardée comme un champ de formes linéaires : c'est le premier exemple de formes différentielles.
Résolution de problèmevignette|Résolution d'un problème mathématique. La résolution de problème est le processus d'identification puis de mise en œuvre d'une solution à un problème. Analyse de cause racine (ACR, Root cause analysis) : cette démarche part du constat qu'il est plus judicieux de traiter les causes d'un problème que d'en traiter les symptômes immédiats. Puisqu'analyser les causes d'un problème permet d'en déterminer une solution définitive, et donc, empêcher qu'il ne se reproduise de nouveau.
Auto-organisationL'auto-organisation ou autoorganisation est un phénomène par lequel un système s'organise lui-même. Les systèmes physiques, biologiques ou écologiques, sociaux, ont tendance à s'organiser d'eux-mêmes. Il s'agit soit de l'organisation initiale du système lors de son émergence spontanée, soit lorsque le système existe déjà de l'apparition d'une organisation plus ou complexe. L'auto-organisation agit ainsi à l'encontre de l'entropie (on parle alors de néguentropie), qui est une mesure de désordre.
Turbulencevignette|Léonard de Vinci s'est notamment passionné pour l'étude de la turbulence. La turbulence désigne l'état de l'écoulement d'un fluide, liquide ou gaz, dans lequel la vitesse présente en tout point un caractère tourbillonnaire : tourbillons dont la taille, la localisation et l'orientation varient constamment. Les écoulements turbulents se caractérisent donc par une apparence très désordonnée, un comportement difficilement prévisible et l'existence de nombreuses échelles spatiales et temporelles.