Matrice inversibleEn mathématiques et plus particulièrement en algèbre linéaire, une matrice inversible (ou régulière ou encore non singulière) est une matrice carrée A pour laquelle il existe une matrice B de même taille n avec laquelle les produits AB et BA sont égaux à la matrice identité. Dans ce cas la matrice B est unique, appelée matrice inverse de A et notée B = A. Cette définition correspond à celle d’élément inversible pour la multiplication dans l’anneau des matrices carrées associé.
Algorithme de recherche d'un zéro d'une fonctionUn algorithme de recherche d'un zéro d’une fonction est une méthode numérique ou un algorithme de recherche d’une valeur approchée d’un x vérifiant , pour une fonction donnée f. Ici, x est un nombre réel appelé zéro de f ou lorsque f est polynomiale, racine de f. Lorsque x est un vecteur, les algorithmes pour trouver x tel que sont généralement appelés « algorithmes de résolution numérique d'un système d'équations ». Ces algorithmes sont une généralisation des algorithmes de recherche d’un zéro d’une fonction et peuvent s’appliquer à des équations linéaires ou non linéaires.
Factorisation de CholeskyLa factorisation de Cholesky, nommée d'après André-Louis Cholesky, consiste, pour une matrice symétrique définie positive , à déterminer une matrice triangulaire inférieure telle que : . La matrice est en quelque sorte une « racine carrée » de . Cette décomposition permet notamment de calculer la matrice inverse , de calculer le déterminant de A (égal au carré du produit des éléments diagonaux de ) ou encore de simuler une loi multinormale. Elle est aussi utilisée en chimie quantique pour accélérer les calculs (voir Décomposition de Cholesky (chimie quantique)).
Somme de RiemannEn mathématiques, et plus précisément en analyse, les sommes de Riemann sont des sommes finies approchant des intégrales. En pratique, elles permettent de calculer numériquement des aires sous la courbe de fonctions ou des longueurs d'arcs, ou inversement, de donner une valeur à des suites de sommes. Elles peuvent également être utilisées pour définir la notion d'intégration. Leur nom vient du mathématicien allemand Bernhard Riemann.
Gaussian eliminationIn mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of operations performed on the corresponding matrix of coefficients. This method can also be used to compute the rank of a matrix, the determinant of a square matrix, and the inverse of an invertible matrix. The method is named after Carl Friedrich Gauss (1777–1855).
Mécanique des fluidesLa mécanique des fluides est un domaine de la physique consacré à l’étude du comportement des fluides (liquides, gaz et plasmas) et des forces internes associées. C’est une branche de la mécanique des milieux continus qui modélise la matière à l’aide de particules assez petites pour relever de l’analyse mathématique, mais assez grandes par rapport aux molécules pour être décrites par des fonctions continues. Elle comprend deux sous-domaines : la statique des fluides, qui est l’étude des fluides au repos, et la dynamique des fluides, qui est l’étude des fluides en mouvement.
Conditionnement (analyse numérique)En analyse numérique, une discipline des mathématiques, le conditionnement mesure la dépendance de la solution d'un problème numérique par rapport aux données du problème, ceci afin de contrôler la validité d'une solution calculée par rapport à ces données. En effet, les données d'un problème numérique dépendent en général de mesures expérimentales et sont donc entachées d'erreurs. Il s'agit le plus souvent d'une quantité numérique. De façon plus générale, on peut dire que le conditionnement associé à un problème est une mesure de la difficulté de calcul numérique du problème.
Intégration de VerletLintégration de Verlet est un schéma d'intégration qui permet de calculer la trajectoire de particules en simulation de dynamique moléculaire. Cette méthode offre une meilleure stabilité que la plus simple méthode d'Euler (créée au ), de même que d'importantes propriétés dans les systèmes physiques, telles que la réversibilité dans le temps et la conservation de propriété. À première vue, il peut sembler naturel de calculer les trajectoires en utilisant la méthode d'Euler. Cependant, ce type d'intégration souffre de nombreux problèmes.
Théorème de dérivation des fonctions composéesEn mathématiques, dans le domaine de l'analyse, le théorème de dérivation des fonctions composées (parfois appelé règle de dérivation en chaîne ou règle de la chaîne, selon l'appellation anglaise) est une formule explicitant la dérivée d'une fonction composée pour deux fonctions dérivables. Elle permet de connaître la j-ème dérivée partielle de la i-ème application partielle de la composée de deux fonctions de plusieurs variables chacune.
PréconditionneurEn algèbre linéaire et en analyse numérique, un préconditionneur d'une matrice est une matrice telle que le conditionnement de est plus petit que celui de . Le préconditionnement est surtout utilisé dans les méthodes itératives pour la résolution d'un système linéaire (méthode du gradient, méthode du gradient conjugué, ...). Au lieu de résoudre, on préfère résoudre qui permet de diminuer considérablement le nombre d'itérations dans la méthode de résolution (itérative). On dit que le système est "mieux" conditionné.