Martingale localeDans la théorie des processus stochastiques, une martingale locale est un processus stochastique qui est localement une martingale, ce qui signifie qu'il y a une suite de localisation de temps d'arrêt et que le processus arrêté est une martingale. Soi un espace de probabilité filtré et un processus -adapté avec (zéro à zéro). S'il existe une suite non décroissante de temps d'arrêt de telle que et pour tout le processus arrêté défini par soit une martingale, alors on appelle une martingale locale et on écrit .
Erreur typeLerreur type d'une statistique (souvent une estimation d'un paramètre) est l'écart type de sa distribution d'échantillonnage ou l'estimation de son écart type. Si le paramètre ou la statistique est la moyenne, on parle d'erreur type de la moyenne. La distribution d'échantillonnage est générée par tirage répété et enregistrements des moyennes obtenues. Cela forme une distribution de moyennes différentes, et cette distribution a sa propre moyenne et variance.
Erreur de mesurevignette|upright|Mesurage avec une colonne de mesure. Une erreur de mesure, dans le langage courant, est Exemples usuels et fictifs d'après cette définition : L'indication d'une balance de ménage pour une masse de certifiée est de . L'erreur de mesure est de – ; La distance entre deux murs, donnée par un télémètre laser est de , valeur considérée ici comme exacte. La valeur mesurée, au même endroit, avec un mètre à ruban est de . L'erreur de mesure, avec le mètre à ruban, est de ou ; La différence sur 24 heures de temps entre une pendule radio pilotée et une montre bracelet est de .
Logarithme discretLe logarithme discret est un objet mathématique utilisé en cryptologie. C'est l'analogue du logarithme réel qui est la réciproque de l'exponentielle, mais dans un groupe cyclique G fini. Le logarithme discret est utilisé pour la cryptographie à clé publique, typiquement dans l'échange de clés Diffie-Hellman et le chiffrement El Gamal.
Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
SemimartingaleIn probability theory, a real valued stochastic process X is called a semimartingale if it can be decomposed as the sum of a local martingale and a càdlàg adapted finite-variation process. Semimartingales are "good integrators", forming the largest class of processes with respect to which the Itô integral and the Stratonovich integral can be defined. The class of semimartingales is quite large (including, for example, all continuously differentiable processes, Brownian motion and Poisson processes).
Mesure spectraleEn mathématiques, plus précisément en analyse fonctionnelle, une mesure spectrale est une application définie sur une tribu à valeurs dans l'espace des projections orthogonales d'un espace hilbertien et vérifiant des axiomes semblables à ceux qui définissent les mesures positives. Les mesures spectrales sont utilisées pour exprimer des résultats en théorie spectrale, tels que le théorème spectral pour les opérateurs auto-adjoints. Les mesures spectrales ont des propriétés similaires aux mesures réelles positives.
Base de SchauderEn analyse fonctionnelle (mathématique), la notion de base de Schauder est une généralisation de celle de base (algébrique). La différence vient du fait que dans une base algébrique, on considère des combinaisons linéaires finies d'éléments, alors que pour des bases de Schauder elles peuvent être infinies. Ceci en fait un outil plus adapté pour l'analyse des espaces vectoriels topologiques de dimension infinie, en particulier les espaces de Banach. Les bases de Schauder furent introduites en 1927 par Juliusz Schauder, qui explicita un exemple pour C([0, 1]).
Lois de Fickvignette|250px|La diffusion moléculaire d'un point de vue microscopique et macroscopique. Les molécules solubles sur le côté gauche de la barrière (ligne violette) diffusent pour remplir le volume complet. En haut : une seule molécule se déplace aléatoirement. Au milieu : Le soluté remplit le volume disponible par marche aléatoire. En bas : au niveau macroscopique, le côté aléatoire devient indétectable. Le soluté se déplace des zones où les concentrations sont élevées vers les zones à concentrations plus faibles.
Polynôme d'HermiteEn mathématiques, les polynômes d'Hermite sont une suite de polynômes qui a été nommée ainsi en l'honneur de Charles Hermite (bien qu'ils aient été définis, sous une autre forme, en premier par Pierre-Simon Laplace en 1810, surtout été étudiés par Joseph-Louis Lagrange lors de ses travaux sur les probabilités puis en détail par Pafnouti Tchebychev six ans avant Hermite). Ils sont parfois décrits comme des polynômes osculateurs.