In mathematics, a local martingale is a type of stochastic process, satisfying the localized version of the martingale property. Every martingale is a local martingale; every bounded local martingale is a martingale; in particular, every local martingale that is bounded from below is a supermartingale, and every local martingale that is bounded from above is a submartingale; however, in general a local martingale is not a martingale, because its expectation can be distorted by large values of small probability. In particular, a driftless diffusion process is a local martingale, but not necessarily a martingale.
Local martingales are essential in stochastic analysis (see Itō calculus, semimartingale, and Girsanov theorem).
Let be a probability space; let be a filtration of ; let be an -adapted stochastic process on the set . Then is called an -local martingale if there exists a sequence of -stopping times such that
the are almost surely increasing: ;
the diverge almost surely: ;
the stopped process is an -martingale for every .
Let Wt be the Wiener process and T = min{ t : Wt = −1 } the time of first hit of −1. The stopped process Wmin{ t, T } is a martingale; its expectation is 0 at all times, nevertheless its limit (as t → ∞) is equal to −1 almost surely (a kind of gambler's ruin). A time change leads to a process
The process is continuous almost surely; nevertheless, its expectation is discontinuous,
This process is not a martingale. However, it is a local martingale. A localizing sequence may be chosen as if there is such t, otherwise . This sequence diverges almost surely, since for all k large enough (namely, for all k that exceed the maximal value of the process X). The process stopped at τk is a martingale.
Let Wt be the Wiener process and ƒ a measurable function such that Then the following process is a martingale:
here
The Dirac delta function (strictly speaking, not a function), being used in place of leads to a process defined informally as and formally as
where
The process is continuous almost surely (since almost surely), nevertheless, its expectation is discontinuous,
This process is not a martingale.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Introduction to the mathematical theory of stochastic calculus: construction of stochastic Ito integral, proof of Ito formula, introduction to stochastic differential equations, Girsanov theorem and F
In this course, various aspects of probability theory are considered. The first part is devoted to the main theorems in the field (law of large numbers, central limit theorem, concentration inequaliti
This course offers an introduction to topics in stochastic analysis, oriented about theory of multi-scale stochastic dynamics. We shall learn the fundamental ideas, relevant techniques, and in general
In probability theory, a real valued stochastic process X is called a semimartingale if it can be decomposed as the sum of a local martingale and a càdlàg adapted finite-variation process. Semimartingales are "good integrators", forming the largest class of processes with respect to which the Itô integral and the Stratonovich integral can be defined. The class of semimartingales is quite large (including, for example, all continuously differentiable processes, Brownian motion and Poisson processes).
En mathématiques, la variation quadratique est utilisée dans l'analyse des processus stochastiques, comme le mouvement brownien et autres martingales. La variation quadratique est un type de variation d'un processus. Si est un processus stochastique à valeurs réelles défini sur un espace probabilisé et avec un indice de temps qui parcourt les nombres réels positifs, sa variation quadratique est le processus, noté , défini par : où parcourt les subdivisions de l'intervalle et la norme de la subdivision est son pas.
Une martingale est une séquence de variables aléatoires (autrement dit un processus stochastique), telles que l'espérance mathématique à l'instant , conditionnellement à l'information disponible à un moment préalable , notée , vaut (avec ). En particulier, dans un processus discret (t entier), . Une martingale peut modéliser les gains / pertes accumulés par un joueur au cours de répétitions indépendantes d'un jeu de hasard à espérance nulle (même si le joueur s'autorise à modifier sa mise en fonction des gains passés), d'où l'emprunt du terme martingale au monde du jeu.
This thesis consists of three applications of machine learning techniques to empirical asset pricing.In the first part, which is co-authored work with Oksana Bashchenko, we develop a new method that detects jumps nonparametrically in financial time series ...
EPFL2022
,
Several computational challenges arise when evaluating the failure probability of a given system in the context of risk prediction or reliability analysis. When the dimension of the uncertainties becomes high, well established direct numerical methods can ...
Elsevier Science Sa2013
When a strict local martingale is projected onto a subfiltration to which it is not adapted, the local martingale property may be lost, and the finite variation part of the projection may have singular paths. This phenomenon has consequences for arbitrage ...