Groupe localement compactUn groupe localement compact est, en mathématiques, un groupe topologique dont l'espace topologique sous-jacent est localement compact. Ces propriétés permettent de définir une mesure, dite mesure de Haar, et donc de calculer des intégrales et des moyennes ou encore une transformée de Fourier. Ces propriétés à la croisée de l'algèbre générale, de la topologie et de la théorie de la mesure sont particulièrement intéressantes, notamment pour leurs applications en physique.
Sous-groupe normalEn théorie des groupes, un sous-groupe normal (également appelé sous-groupe distingué ou sous-groupe invariantLien web|langue=fr|titre=Introduction à la théorie des groupes et de leurs représentations|auteur=Jean-Bernard Zuber|url=) H d'un groupe G est un sous-groupe globalement stable par l'action de G sur lui-même par conjugaison. Les sous-groupes normaux interviennent naturellement dans la définition du quotient d'un groupe. Les sous-groupes normaux de G sont exactement les noyaux des morphismes définis sur G.
Sous-groupeUn sous-groupe est un objet mathématique décrit par la théorie des groupes. Dans cet article, (G, ∗) désigne un groupe d'élément neutre e. Dans la pratique, on note la loi interne du sous-groupe avec le même symbole que celui de la loi interne du groupe, c'est-à-dire ∗. Si G est un groupe alors {e} (le groupe réduit à l'élément neutre) et G sont toujours des sous-groupes de G. Ce sont les sous-groupes triviaux de G. On les appelle également les sous-groupes impropres de G.
Espace localement compactEn topologie, un espace localement compact est un espace séparé qui admet des voisinages compacts pour tous ses points. Un tel espace n'est pas nécessairement compact lui-même mais on peut y généraliser (au moins partiellement) beaucoup de résultats sur les espaces compacts. Ce sont aussi les espaces qu'on peut « rendre » compacts avec un point grâce à la compactification d'Alexandrov. La compacité est une source très fertile de résultats en topologie mais elle reste une propriété très contraignante.
Groupe compactEn mathématiques, et plus particulièrement en analyse harmonique abstraite, un groupe compact est un groupe topologique dont l'espace topologique sous-jacent est compact. Les groupes compacts sont des groupes unimodulaires, dont la compacité simplifie l'étude. Ces groupes comprennent notamment les groupes finis et les groupes de Lie compacts. Tout groupe compact est limite projective de groupes de Lie compacts. Tout groupe discret fini est un groupe compact. En effet, tout espace discret fini est compact.
Treillis des sous-groupesthumb|Diagramme de Hasse du treillis des sous-groupes du groupe diédral D. En mathématique, le treillis des sous-groupes d'un groupe G est le treillis constitué des sous-groupes de G, muni de l'inclusion comme relation d'ordre partielle. La borne supérieure de deux sous-groupes a et b est le sous-groupe engendré par l'union de a et b et leur borne inférieure est leur intersection. Le groupe diédral D des huit isométries du carré contient dix sous-groupes, y compris D lui-même et son sous-groupe trivial.
Espace σ-compactEn mathématiques, un espace topologique est dit σ-compact (ou localement compact dénombrable à l'infini) s'il est l'union dénombrable de sous-espaces compacts. Un espace est dit σ-localement compact s'il est à la fois σ-compact et localement compact. Tout espace compact est σ-compact, et tout espace σ-compact est de Lindelöf (c'est-à-dire que tout recouvrement ouvert a un sous-recouvrement dénombrable).
Sous-groupe compact maximalEn mathématiques, un sous-groupe compact maximal K d'un groupe topologique G est un sous-groupe K qui est un espace compact, dans la topologie du sous-espace, et maximal parmi ces sous-groupes. Les sous-groupes compacts maximaux jouent un rôle important dans la classification des groupes de Lie et en particulier des groupes de Lie semi-simples. Les sous-groupes compacts maximaux de groupes Lie ne sont pas en général unique, mais sont unique à conjugaison près - ils sont essentiellement uniques.
Continuité uniformeEn topologie, la continuité uniforme (ou l'uniforme continuité) est une propriété plus forte que la continuité, et se définit dans les espaces métriques ou plus généralement les espaces uniformes. Contrairement à la continuité, la continuité uniforme n'est pas une notion « purement topologique » c'est-à-dire ne faisant intervenir que des ouverts : sa définition dépend de la distance ou de la structure uniforme. Le contexte typique de la définition de la continuité uniforme est celui des espaces métriques. N.
Closed-subgroup theoremIn mathematics, the closed-subgroup theorem (sometimes referred to as Cartan's theorem) is a theorem in the theory of Lie groups. It states that if H is a closed subgroup of a Lie group G, then H is an embedded Lie group with the smooth structure (and hence the group topology) agreeing with the embedding. One of several results known as Cartan's theorem, it was first published in 1930 by Élie Cartan, who was inspired by John von Neumann's 1929 proof of a special case for groups of linear transformations.